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Abstract 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) is the most common monogenic form of vascular cognitive impairment and 

dementia. A genetic arteriolosclerotic disease, the molecular mechanisms driving vascular brain 

degeneration and decline remain unclear. With the goal of driving discovery of disease-relevant 

biological perturbations in CADASIL, we used machine learning approaches to extract 

proteomic disease signatures from large-scale proteomics generated from plasma collected from 

three distinct cohorts in US and Colombia: CADASIL-Early (N = 53), CADASIL-Late (N = 45), 

and CADASIL-Colombia (N = 71). We extracted molecular signatures with high predictive 

value for early and late-stage CADASIL and performed robust cross- and external-validation. 

We examined the biological and clinical relevance of our findings through pathway enrichment 

analysis and testing of associations with clinical outcomes. Our study represents a model for 

unbiased discovery of molecular signatures and disease biomarkers, combining non-invasive 
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plasma proteomics with clinical data. We report on novel disease-associated molecular 

signatures for CADASIL, derived from the accessible plasma proteome, with relevance to 

vascular cognitive impairment and dementia. 

Main Text 

Introduction  

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) is an autosomal dominant form of VCID caused by missense mutations in 

NOTCH3. CADASIL is the leading cause of hereditary stroke and vascular cognitive impairment 

and dementia. Although the classical Mendelian syndrome is considered rare, with a prevalence 

of 1.3 - 4.1 per 100,000 adults (1), variants in NOTCH3 associated with endophenotype of white 

matter disease are more common, occurring in as many as 1 in 300 individuals (2). Such 

prevalence suggests that discoveries of mechanisms underlying VCID in CADASIL could be 

relevant to vascular white matter disorders and dementia syndromes.  

 

Research on the molecular pathogenesis of CADASIL has largely been limited to mice and 

postmortem human brain tissue. Consequently, our understanding of the early and evolving 

molecular pathogenesis of CADASIL, most relevant for development of impactful therapeutics, 

remains limited (3). NOTCH3 is a transmembrane receptor that is highly expressed in mural 

cells. A key unresolved question involves understanding how mutations in the extracellular 

domain (ECD) of NOTCH3 lead to the dysfunction of small-caliber blood vessels (4) and 

multicellular vascular phenotypes such as neurovascular decoupling, hypoperfusion, and blood-

brain barrier dysfunction (5). In humans, neuroimaging abnormalities provide indications of 

affected vascular microenvironments (6–8). As a chronic disease, molecular pathologies in 

CADASIL unfold over decades. Although NOTCH3 is predominantly expressed by brain 

vascular mural cells, which molecular dysfunctions drive clinical symptomatology and how to 

counter disease progression across various disease stages is not understood. A comprehensive 

and unbiased molecular investigation could capture key molecular drivers of brain dysfunction 

and degeneration in CADASIL, highlighting potential therapeutic opportunities. 

 

In this study, we generated unbiased plasma proteomics and asked whether CADASIL has a 

specific disease signature in peripheral blood in early and late stages of disease and whether 

these signatures are associated with clinically relevant outcomes. We used multivariate analytical 

methods, such as machine learning (ML), to identify molecular signatures of disease. Leveraging 

publicly available brain single cell transcriptomics, we assigned proteomic signatures to cells 

within the neurovascular unit. Finally, using clinical outcomes of relevance to VCID, we 

demonstrated the clinical relevance of our findings, with implications for future novel biomarker 

development for risk stratification, prognostication, and disease monitoring across spectrum of 

disease severity from early to late stage of CADASIL. 

 

Here, we investigated the plasma proteome of CADASIL using data generated from an aptamer-

based assay that quantifies over 7,000 proteins (SomaSCAN 7k, Somalogic, Boulder, CO) (9–

12). Three distinct CADASIL cohorts with different disease stages were included in our 

analyses. Considering the age-associated nature of CADASIL, in which cognitive impairment 

and disability typically manifest after the age of 55 years (with notable patient-to-patient 
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variability), we categorized our cohorts accordingly (13, 14). The older cohort from the Mayo 

Clinic (N = 45; MAge > 55 years) was labeled as CADASIL-Late, while the younger cohort 

recruited at UCSF (N = 53; MAge < 55 years) was designated as CADASIL-Early. We employed 

the third cohort from Colombia, South America as a holdout validation dataset (CADASIL-

Colombia; N = 71), owing to technical variations in its collection and processing. To identify 

proteomic signatures intrinsically linked to the disease, we developed a novel machine learning 

methodology. Our methodological workflow incorporates consensus aggregation of a suite of 

statistical evaluators coupled with rigorous cross-validation. Our overarching objectives were to: 

(1) isolate early- and late-stage CADASIL proteomic signatures; (2) validate these signatures 

both internally and in external CADASIL populations; (3) elucidate the biological implications 

of these identified proteins; and (4) correlate these protein signatures with relevant clinical and 

imaging metrics. 

  

The goal of our study was to uncover disease-associated molecular signatures with a hypothesis-

agnostic approach to allow for data-driven discovery of molecular perturbations and 

identification of novel therapeutic targets. To this end, we leveraged state-of-the-art 

computational methods to analyze plasma proteome data generated in three distinct CADASIL 

cohorts spanning early preclinical disease to more advanced clinical stages involving strokes. In 

addition, we used brain tissue to validate the expression of key proteins and associated molecular 

pathways in brain tissue donated from individuals with CADASIL. 

Results 

An overview of the study design is presented in Figure 1. The demographic characteristics of 

each cohort are described in Table 1. Designation of CADASIL-Early and CADASIL-Late 

monikers was based on the mean age of CADASIL participants and their symptom severity in 

respective cohorts. 

Novel ML workflow detects CADASIL-associated proteomics signatures in peripheral 

blood 

To elucidate the proteomic signatures of CADASIL, we developed a hypothesis-agnostic, 

multivariate analytical workflow, emphasizing robust statistical validation and biological and 

clinical interpretation of findings (Fig. 2). Our initial challenge pertained to reducing the 

dimensionality of over 7,000 proteins to more manageable protein lists. To achieve this, we 

implemented the leave-one-out (LOO) method, creating partitions (LOO folds) of our dataset. 

This method ensured minimal bias from individual samples and enhanced the generalizability of 

our model. In each LOO fold, only proteins with significant differences across groups (P < 0.05) 

progressed to subsequent analyses, resulting in approximately 1,300 proteins per fold. We then 

used a diverse array of feature selection algorithms, with different mathematical decision 

boundaries and solvers, carefully chosen to address the unique challenges posed by the high 

dimensionality and low sample size of our dataset. Next, we adopted a novel highly stringent, 

heterogeneous ensemble aggregation technique, which combines various algorithmic predictions 

to achieve a more accurate and reliable outcome. This method was crucial in ensuring that our 

protein selection was not biased towards any single machine learning algorithm, nor overfitted to 

any one sample. Proteins were only included in our final proteomic signature if they passed the 

highly conservative requirement of selection across all LOO folds by at least two different 

evaluators. When applied to each discovery cohort, these criteria led to the identification of two 
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definitive protein signatures: the CADASIL-Early signature with 16 unique proteins and the 

CADASIL-Late signature with 20 unique proteins. 

 

The following 16 proteins composed the CADASIL-Early proteomic signature: ANP32B, 

C4A|C4B, ENPP2, FN1, FUT3, GAS7, GPX1, HMBS, HPCAL1, MB, MGP, MYZAP, RRM1, 

SPINK6, UROS, and VEGFR3 (Fig. 3A). The following 20 proteins composed the CADASIL-

Late proteomic signature: ABO, ACAA1, B3GAT1, BCAR3, C4A|C4B, CD209, DTNA, ECH1, 

ENDOU, FABP4, HNMT, KLRF1, KNG1, LTA4H, MASP1, OMG, SEMA3B, SLITRK1, 

TARDBP, and TMEM132B (Fig. 3B). 

Machine learning model differentiates individuals affected with CADASIL from Healthy 

Controls using protein signatures 

To further validate the uncovered protein signatures, we visualized associations with disease 

states using both unsupervised and supervised machine learning approaches. Principal 

component analysis (PCA), a non-supervised multivariate method, was performed on the 

selected set of proteins included in the Early and Late signatures (16 and 20 proteins, 

respectively). Visualization of the data on the principal component axes highlighted the 

elimination of non-disease-related signals (Fig. 3C-D), following the curation steps. We then 

trained supervised regularized linear discriminant analysis (rLDA) models using the protein sets 

as the input and disease status as the output. This approach resulted in ideal classification of 

disease instances (Fig. 3E-F). Rigorous cross-validation of the rLDA models was performed, 

which showcased their capacity for high accuracy and precision in distinguishing CADASIL 

from control samples, with statistical significance surpassing that of the permuted (i.e. random 

protein) models (P < 0.00001; Fig. 3G-H). 

Internal and external validation of the CADASIL-Late protein signature for distinguishing 

CADASIL patients from Controls  

To assess the generalizability and reproducibility of our protein signatures, we performed both an 

internal validation using the opposing cohort (i.e., Late vs Early) in addition to an external 

validation using an independently collected dataset shared by the Neuroscience Group of 

Antioquia (Colombia) with data generated using plasma samples collected from a Colombian 

cohort (CADASIL-Colombia; demographics in Table 1). In the internal validation label 

permutation testing, we found that the CADASIL-Early signature was noisy in discriminating 

CADASIL from control groups in the CADASIL-Late cohort (P > 0.05; Fig. 4A). However, the 

CADASIL-Late signature performed at highly significant levels when distinguishing between 

CADASIL and control subjects in the CADASIL-Early cohort (P = 0.004; Fig. 4B). 

 

In our external validation, we trained supervised classifiers to distinguish disease status of the 

CADASIL-Colombia cohort using the Early and Late protein signatures as input. The 

CADASIL-Early plasma signature was marginally significant in discriminating in the 

CADASIL-Colombia dataset (P = 0.055; Fig. 4C). However, the CADASIL-Late plasma 

signature was significant in discriminating in the CADASIL-Colombia dataset (P = 6.6 x 10-3; 

Fig. 4D). To further substantiate these findings, we conducted permutation-based testing on the 

CADASIL-Late results and investigated separation in the high dimensional space by plotting 

ROC curves and LDA coordinates in biplots (Fig 3E-H). Label permutation testing confirmed 
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significant discrimination between CADASIL and disease for both cohorts when provided 

protein level information for proteins in the CADASIL-Late signature (P = 0.049 for Late → 

Early; P = 0.017 for Late → Colombia; Table S3). The encouraging results of these tests 

provided further validation for our machine learning approach, indicating that our disease-

associated protein set held reliable predictive capacity across diverse CADASIL populations. 

Early and Late CADASIL proteomic signatures have both overlapping and distinct 

network components suggesting evolution and progression in patho-mechanisms of 

CADASIL across disease stages 

In order to attain a better understanding of the molecular pathways, associated putative 

mechanisms, and interactions between proteins captured by our protein signatures, we used the 

web based STRING platform (15). Both the Early and Late signatures served as input, and the 

resulting networks were overlapped to assess similarities and differences. The resulting network 

revealed 33 nodes and 55 edges, highlighting intricate relationships among proteins (Fig. 5A). 

Several proteins in the signature served as network hubs, including FN1 with 12 interactions, 

ITGB1 with 8, and SDC4, KNG1, and VEGFR3 each with 7 interactions. Notably, 7 interactions 

were found between proteins specifically associated with CADASIL-Early and CADASIL-Late, 

providing insights into potential transitional pathways and the multifactorial nature of 

CADASIL. 

 

We then made use of Ingenuity Pathway Analysis (IPA) to predict upstream regulators of each 

protein signature, respectively. 17 proteins were found to be significant upstream regulators of 

the Early and Late networks (overlap P < 0.05). The overlapped regulator network showed 

notable interconnectedness between CADASIL-Early and CADASIL-Late signatures (Fig. 5B). 

The predicted activation Z-scores of all upstream regulators are presented in Table S4. TGF-β1, 

a protein with hypothesized involvement in CADASIL (16–18), emerged as a key regulator 

protein. FN1, a hub protein in the STRING analyses, also emerged as a hub in the IPA network, 

sharing many upstream regulators with other CADASIL-Early and CADASIL-Late proteins. The 

upstream regulator analysis provides potential insights into therapeutic targets and yet to be 

explored adjacent pathways. 

Specific investigation of signature proteins and their corresponding genes identified links to 

perturbations in metabolic, neuronal, cell differentiation, and inflammatory pathways 

Noting unique components when contrasting the CADASIL-Early with CADASIL-Late 

signature networks, we then sought to identify specific perturbations linked to the enrichment of 

pathways or differential expression of proteins. We investigated these potentially pathological 

associations using both the EnrichR (19) platform and a Protein-centric Reverse GEO Search 

(20). For the CADASIL-Early signature (Fig. 5C), several enriched pathways were noted. These 

included: heme biosynthesis (P = 3.3 x 10-5), specifically the porphyrin metabolism pathway (P 

= 5.3 x 10-4), glutathione metabolism (P = 9.3 x 10-4) and phosphodiesterase activity (P = 4.0 x 

10-3), regulation of axonogenesis (P = 1.2 x 10-3), and Lewy body enrichment (P = 4.0 x 10-3). 

These findings suggest notable changes encompassing metabolic, oxidative stress, and neuronal 

dysfunction related pathologies. Further, the Early signature Reverse GEO Search (Figure S1A) 

highlighted FN1 as the top hit and linked this association to upregulation in a hepatocellular 
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carcinoma model (P = 5.50 x 10-39), cytokine-treated insulinoma cells (P = 1.29 x 10-28) and a 

proliferating glioblastoma (P = 6.31 x 10-26). 

 

For the CADASIL-Late signature (Fig. 5D), we noted significant enrichment for complement 

pathways (P = 8.0 x 10-5), such as the classical complement cascade (P = 1.4 x 10-3), peroxisome 

pathways (P = 2.5 x 10-3), including fatty acid metabolism (P = 3.1 x 10-3), manganese binding 

(P = 1.0 x 10-3), PPAR signaling (P = 2.5 x 10-3), staphylococcal infection (P = 4.0 x 10-3), and 

acetyl-CoA metabolism (P = 6.0 x 10-3). The broad diversity of enriched pathways observed in 

this signature reflect key pathologies associated with neuronal dysfunction, chronic 

inflammation, and metabolic changes. Further, the Late signature Reverse GEO Search (Figure 

S1B) noted significant associations with the upregulation of LTA4H in intrahepatic 

cholangiocarcinoma (P = 2.04 x 10-30) and in antifibrotic models (P = 8.32 x 10-27) as well as 

elevated ACAA1 in cholangiocarcinoma (P = 1.70 x 10-21). 

Dynamic transcriptomic changes and cell-specific expression patterns uncovered in 

CADASIL proteomic signature 

To further validate clinical relevance, we compared peripheral blood proteomic signatures 

against brain tissue bulk transcriptomics signatures, using transcriptomics data generated from 5 

CADASIL and 7 control brains from the BA4/6 area of the human cortical region. From the 

Early signature, HPCAL1 and VEGFR3 showed upregulation in CADASIL patients (log2FC = 

1.3 and log2FC = 0.7, respectively; Fig. 6A) while ENPP2, GAS7, and RRM1 were significantly 

downregulated (log2FC = -2.6, log2FC = -1.1, and log2FC = -0.8, respectively; Fig. 6A). From 

the Late signature, BCAR3 was significantly upregulated in CADASIL (log2FC = 1.0, Fig. 6B) 

whereas SEMA3B and OMG displayed significant downregulation in CADASIL brain tissue in 

comparison to control brain tissue (log2FC = -2.2 and log2FC = -1.3, respectively; Fig. 6B). 

These results reveal dynamic transcriptomic changes for signature proteins in CADASIL patients 

compared to controls. It should be noted that all brain tissue represents the end stage. 

 

We then analyzed publicly available single-cell RNA-seq data from brain vascular cells to map 

neurovascular expression of the protein signatures (21, 22). These data were generated ex-vivo 

from normal cerebral cortex from patients undergoing surgery for refractory epilepsy and cortical 

dysplasia. We made use of ex-vivo cell atlases, rather than postmortem atlases, due to notable 

changes in gene expression between living and postmortem brains (23).For the Early signature, 

endothelial expression was prominent for VEGFR3, FN1, MGP, and HPCAL1 (Fig 5C-D). 

ENPP2 was expressed in oligodendrocyte lineage cells. For the CADASIL-Late signature, 

endothelial expression was noted for SEMA3B, TMEM132B, and ABO (Fig 5E-F). OMG and 

B3GAT1 showed oligodendrocyte expression. KLRF1 was expressed in T cells and BCAR3 in 

astrocytes. The remainder of the proteins were not significantly cell specific. These cell-specific 

expression patterns provide insight into which brain vascular cells display dysregulation of 

signature proteins in CADASIL progression. 

CADASIL signature proteins exhibit strong associations with quantitative clinical 

measures and serve as predictors of disease-related traits 

Lastly, we sought to better understand the clinical relevance of blood proteomic signatures 

obtained. We began this final investigation by testing the association of our protein signatures 
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with characteristic MRI findings from CADASIL-Early patients. The assessed MRI metrics 

included white matter hyperintensities (WMH), a measure of white matter injury, enlarged 

perivascular space volume (ePVS), which are a more specific radiographic measure of small 

vessel disease(24), and brain atrophy measured by the negative log of brain-parenchymal 

fraction (-log(BPF); with higher -log(BPF) corresponding to higher brain atrophy) (Fig. 7A-B). 

In the Early signature (Fig. 7A), ANP32B showed the strongest positive association with WMH 

(R = 0.52, P = 0.008) and ePVS (R = 0.46, P = 0.022). Meanwhile, GAS7 was associated 

negatively with ePVS (R = -0.46, P = 0.021) but positively with brain atrophy (R = -0.24, P > 

0.05). For the Late signature (Fig. 7B), C4A|C4B was positively associated with measures of 

ePVS load (R = 0.38, P > 0.05) and DTNA was positively associated with ePVS (R = 0.43, P < 

0.05). TMEM132B was positively associated with brain atrophy (R = -0.35, P > 0.05). 

 

With regression analyses, we show associations between proteins in the signatures and measures 

of cognitive impairment in CADASIL-Early patients. The clinical outcomes include functional 

decline (Clinical Dementia Rating Score (CDR)) (25, 26), cognitive processing time (Trail 

Making Test Part B Completion Time (TRAILB)), and global cognitive score (Montreal 

Cognitive Assessment score (MOCA)). Due to limited statistical power in clinical data, our 

regression analyses were underpowered to survive Bonferroni correction. Moreover, given the 

hypothesis-driven nature of these analyses, we did not think it pertinent to look at multiple 

comparisons corrected p-values. Instead, our investigation aimed to determine if there was 

consistency in the associations of proteins across MRI findings and cognitive measures. We 

sought to understand whether the values of proteins were consistently related across various 

measures, termed as “congruent” associations. For example, if a protein showed a positive 

association with increased brain atrophy, clinical congruence would suggest it also showed a 

positive association with increased functional decline and slower processing speed. Conversely, 

it would exhibit a negative association with global cognition, as higher global cognition indicates 

better cognitive outcomes. Thus, we defined a protein as clinically congruent for disease 

progression if it showed a positive association with brain atrophy, functional decline, and 

processing speed, and a negative association with global cognition. Conversely, proteins with a 

potentially disease-ameliorating or neuro-protective role in the neurovascular unit were expected 

to exhibit the opposite pattern: a negative association with brain atrophy, functional decline, and 

processing speed, and a positive association with global cognition. FN1, a protein also 

highlighted in the transcriptomic data, demonstrated clinical congruence with disease 

progression. FN1 was positively associated with brain atrophy (R = 0.42, P = 0.038; Fig. 7C), 

functional decline (R = 0.41, P = 0.045; Fig. 7D), and slowed processing speed (R = 0.33, P > 

0.05; Fig. 7F). As well, FN1 had a strong negative association with global cognition (R = -0.24, 

P > 0.05; Fig. 7E). ENPP2, on the other hand, was clinically congruent with a possible disease-

meliorating role. ENPP2 was negatively associated with brain atrophy (R = -0.39, P > 0.05; Fig. 

7G), functional decline (R = -0.62, P = 0.001; Fig. 7H), and slowed processing time (R = -0.58, 

P = 0.006; Fig. 7I). Furthermore, ENPP2 was positively associated with global cognition (R = 

0.69, P = 0.0005; Fig. 7J). 

 

Other proteins showed associations with cognitive measures. For the CADASIL-Early signature 

(Fig. 7A), HPCAL1 was clinically congruent and negatively associated with functional decline 

(R = -0.41, P = 0.043) but positively associated with global cognition (R = 0.47, P = 0.030). 

HMBS exhibited a strong negative association with global cognition (R = -0.47, P = 0.029). For 
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the CADASIL-Late signature (Fig. 7B), SLITRK1 showed a consistent negative association with 

cognition, including higher functional decline (R = -0.28, P > 0.05) and higher processing time 

(R = -0.18, P > 0.05). TMEM132B exhibited positive associations with global cognition (R = 

0.46, P = 0.032). 

Discussion  

The goal of our study was to take an unbiased approach to discovery of blood molecular 

signatures of CADASIL, a monogenic form of VCID, as a critical first step toward development 

of biomarkers and formulation of mechanistic hypotheses for development of impactful 

treatments. To this end we formulated a novel experimental design and analytical approach 

aimed at extracting proteomic signatures in a methodologically unbiased manner, specifically 

tailored to monogenic diseases or disease states with clear categorization of disease and control 

groups. This research marks, to our knowledge, the first instance of unveiling a plasma 

proteomic signature associated with a monogenic form of VCID. Our findings shed light on 

molecular pathologies in CADASIL and serve as a stepping stone towards a broader 

investigation of VCID blood signatures. 

 

We undertook an approach for capturing multivariate associations inherent in “-omics” datasets 

that traditional differential expression analyses reliant on univariate significance cannot capture 

(27). Chowdhury et al. (2023) used a technically analogous approach to probe the proteomics of 

high-grade ovarian cancer, revealing a highly predictive, externally validated biomarker panel 

(28). Our independently constructed methodology demonstrated a comparably high efficacy. By 

implementing a heterogenous bagging methodology, we amalgamated multiple algorithms, 

including recursive feature elimination, linear methods (logistic regression and rLDA), and non-

linear methods (random forests and Markov blankets) (29–33). This combination mitigates the 

risk of overfitting to a singular method’s decision boundary, especially given the disparity 

between our limited sample size and the exceedingly large feature count inherent in proteomic 

research (34). Rigorous cross-validation, permutation testing, and validation through independent 

cohorts further curtailed the potential for overfitting (35). Finally, we used brain tissue 

transcriptomics and clinical data to ensure that proteins identified by ML in the blood were 

relevant to the brain and clinical phenotypes of the disease. The advantage of this approach over 

univariate differential expression analysis encompasses enhanced adaptability in representing 

nonlinear dynamics and interactions, a reduced propensity for false positives owing to 

collinearity, a focus on disease categorization beyond mere association, inherent feature selection 

for pinpointing crucial subsets, and augmented resilience against batch effects through ensemble 

aggregation (36, 37). 

 

Applying this multi-step machine learning workflow resulted in the identification of robust 

protein signatures in both cohorts. The CADASIL-Early cohort yielded a concise 16-protein 

signature that primarily illuminated alterations in metabolic pathways. The CADASIL-Late 

cohort revealed a 20-protein signature characterized by chronic inflammation, immune 

alterations, and metabolic dysfunction. The CADASIL-Colombia cohort was utilized for external 

validation as an independently collected cohort. This validation cohort was characterized by 

large heterogeneity with regard to the age of participants and the age of the samples. Therefore, 

some technical noise was expected regarding plasma protein levels. Despite this limitation, we 

externally validated the discriminatory ability of the Late signal (AUC = 0.716, P < 0.005; Table 
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S3), whereas the AUC score of the Early signal was marginally significant (AUC = 0.610, P = 

0.055; Table S2). This finding supports our hypothesis that robust proteomic signatures and 

molecular signals could be identified using our unbiased and multivariate analytical approaches. 

 

Specific investigation of the proteins comprising each signature using a variety of methods, 

ranging from pathway enrichment analysis to single-cell RNA-seq, highlighted several additional 

noteworthy observations that may also serve as guides for the development of new therapeutic 

strategies. Perturbed pathways suggested by the CADASIL-Early signature emphasized 

disruptions in heme, porphyrin, and glutathione metabolic processes, aligning with pathways 

such as oxidative stress resistance via glutathione and biosynthesis of porphyrin-containing 

compounds. CADASIL compromises redox equilibrium and increases the production of reactive 

oxygen species (38–40). This is consistent with the enrichment of the glutathione pathway, 

which is known for its role in neutralizing oxidative stress. 

 

Interestingly, TDP-43 was identified in the CADASIL-Late signature (TARDP, a multimeric 

TDP-43 protein). The cytoplasmic mislocalization of TDP-43 and its aggregation are prominent 

pathologies in many neurodegenerative diseases (Frontotemporal Lobar Degeneration, 

Amyotrophic Lateral Sclerosis, and Alzheimer’s Disease) (41, 42). It is possible that TDP-43 

related molecular dysregulations may serve as an explanatory factor for the observed 

associations between CADASIL and other neurodegenerative diseases (e.g., ALS, FTD) (43–45). 

However, its specific role in CADASIL and its links to NOTCH3 mutations have yet to be 

investigated. TDP-43 was found to be downregulated in plasma of CADASIL patients. It is not 

clear whether it is mis-localized. Similarly, TDP-43 levels were found to be decreased in the 

plasma of FTD patients (46). The presence of TDP-43 in the CADASIL-Late signature suggests 

a potentially progressive pathology primed for therapeutic targeting, and thus warrants further 

investigation. 

 

Other hallmark pathologies known to be associated with other neurodegenerative conditions 

were also highlighted, particularly in pathway analysis of the CADASIL-Early signature. 

Pathways associated with Lewy bodies, the defining characteristic of Lewy body dementia (47) 

and often observed in Parkinson’s disease (48), were found to be significantly enriched (P = 4.0 

x 10-3). This result is intriguing given prior findings that link NOTCH3 mutations to worsened 

clinical outcomes in Parkinson’s disease (49) and numerous reports observing parkinsonism in 

late CADASIL (50). The finding of Lewy body pathways in CADASIL implicates a possible 

pathological link between CADASIL and Lewy-body-related neurodegenerative diseases.  

 

TGF-β1 emerged as a primary predicted upstream regulator of both signatures. TGF-β1 signaling 

has consistently been found to play a functional role in the cerebrovascular system, including 

vascular senescence (51–54), cerebral angiogenesis and maintenance of brain vessel homeostasis 

(16). Furthermore, TGF-β1 and its receptors are known to play a key role in fibrosis across 

several diseases (55, 56). Specific to the pathways affected in our signatures, earlier research has 

linked TGF-β1 upregulation to heightened oxidative stress and decreased glutathione levels in 

endothelial cells (17). Additionally, latent TGF-β1 has been found to bind mutated NOTCH3 

extracellular aggregates, suggesting its potential involvement in fibrogenesis (18). The 

confluence of fibrosis-associated TGF-β1 upstream regulation with the proteomic signature of 

CADASIL provides biological validation, considering that fibrosis is a characteristic feature of 
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CADASIL histopathology (57). Furthermore, Reverse GEO analyses reported connections with 

many cases of oncological disease, coupled with recent studies emerging from the oncology field 

to target the TGF-β pathway (58), suggest potential analogous alterations in processes such as 

angiogenesis and present an intriguing path forward for further investigation. 

 

In addition to their relevance in neurodegenerative and fibrotic pathways, the Early and Late 

signatures in our study also revealed associations with past proteomic analyses related to aging 

and cerebrovascular dysfunction. Oh et al. employed a machine learning-based approach to 

create a Feature Importance for Biological Aging score for human blood plasma proteins 

measured on the same SomaLogic platform as our study (59). Their investigation into over 4,000 

proteins pinpointed a distinct five protein signature of aging arteries, notably including MGP, a 

protein also identified in our Early signature. Significantly, MGP showed a substantial 

interaction with TAGLN in their analysis, a protein under the regulatory influence of TGF-β1 

(60) and the most significant protein in the Oh et al. organismal aging model. The interaction of 

MGP and TAGLN, both prominently expressed in fibroblasts and endothelial cells, underscores 

their potential role in the advanced vascular aging process characteristic of CADASIL, and 

possibly in the general aging population. Similarly, Walker et al. found that plasma TAGLN is 

highly significant for an increased risk of dementia, further underscoring the relevance of 

MGP/TAGLN proteins in aging-related pathologies (61). Intriguingly, the adipose aging 

signature of Oh et al., which demonstrated the third highest hazard ratio for organ-chronological 

age-gap, included FABP4, a protein of the Late signature. The co-presence of these signature 

proteins in our age-matched cohorts is particularly noteworthy. It may characterize CADASIL as 

an expedited model for studying cerebrovascular aging, extending beyond its primary 

neurodegenerative context. This aspect of our findings not only reinforces their robustness but 

also enhances the generalizability and applicability of our results in broader aging research. 

  

We further validated our peripheral blood signature proteins against brain tissue transcriptomics 

and assigned proteins to specific cells using publicly available single nucleus RNA-seq data. 

Using the bulk transcriptomic data generated, we found dynamic transcriptomic changes. 

Additionally, using ex-vivo single-cell RNA-seq data from brain vascular cells (21, 22), we 

observed cell-specific expression patterns consistent with pathological alterations in the 

cerebrovasculature. Endothelial cells and fibroblasts appeared to be prominently affected in the 

Early signature, while the involvement of astrocytes, microglia, and oligodendrocytes was noted 

in the Late signature, consistent with the advancement of disease from brain borders into 

parenchyma as disease progresses. This suggests that therapeutic targets may differ based on the 

disease stage. Both signatures showed marked expression of numerous proteins (FN1, MGP, 

GAS7, DTNA, and TMEM132B) in fibroblasts, perhaps further reflecting fibrosis, collagen 

protein alterations, and extracellular matrix changes identified by pathway analyses. Numerous 

of these molecular processes and pathways have been implicated in CADASIL, including 

collagen/ECM involvement (4, 62–64) and fibrosis (17, 40). 

 

Lastly, to examine the clinical relevance of our molecular findings we tested associations 

between identified proteomic signatures and disease-associated quantitative clinical phenotypes. 

For this we limited our analysis to CADASIL-Early patient data. We found strong associations 

with clinical congruence across several metrics. Several proteins from the CADASIL-Early 

signature were found to be associated with neuroimaging findings. Fibronectin, a protein 
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previously known to be enriched in CADASIL vessels and shown to increase levels in blood 

vessels of CADASIL patients (18), was upregulated and demonstrated clinical congruence with 

disease progression in the CADASIL-Early cohort. While FN1 plays a critical role in vascular 

remodeling after hypoxia- or hypertension-induced vessel injury (65, 66), its aggregation in 

tissues may be detrimental by promotion of thrombogenesis (67, 68), neuroinflammation (69), 

and arrest of myelination (70), all thought to be components of chronic cSVD and stroke-related 

VCID. Upregulated CADASIL FN1 levels were positively associated with increased cerebral 

atrophy and cognitive deterioration in our Early cohort, emerging as a critical, possibly 

neurodegenerative factor in CADASIL, which warrants exploration in future studies. 

Conversely, ENPP2 (autotaxin) displayed clinical congruence with a disease-meliorating 

character, as it was inversely associated with brain atrophy and cognitive decline measures. 

ENPP2 was significantly downregulated in both plasma and brain transcriptomics of CADASIL 

patients. ENPP2 is an abundantly expressed member of the ectonucleotide 

pyrophosphatase/phosphodiesterase family with lysophospholipase activity, catalyzing 

lysophosphatidic acid (LPA) formation (71). Despite mounting evidence for an excitotoxic 

potential in acute stroke (72), other studies have noted potentially beneficial effects in 

oligodendrocyte maturation (73), protection of endothelial cells from hypoxia (74) and 

suppression of CD8+ T cell infiltration in tumors (75). These results suggest that ENP22 might 

confer protection in chronic, but not acute injury, and thus its depletion could reflect long-term 

changes in CADASIL rather than the effects of strokes. 

  

The elucidation of distinct Early and Late signatures that discriminate CADASIL from controls 

and are associated with clinical outcome metrics represents an advancement in the development 

of molecular approaches to advance precision diagnostics across disease stages. We compensated 

for small sample sizes by using novel analytical methods in addition to cross-validation of results 

in independent cohorts and brain tissue. The methods for integration of advanced computational 

techniques and independent validation cohorts translate cross-sectional discoveries into robust 

and generalizable targets. These findings lay the groundwork for the elucidation of CADASIL 

pathogenesis and the subsequent identification of disease-stage-specific biomarkers and disease-

stage agnostic or specific therapeutic targets. 

 

To our knowledge, this is the first study to implement a multi-step machine learning approach to 

blood proteomics data to uncover molecular signatures as an unbiased starting point for 

understanding evolving molecular dysregulation across disease stages in CADASIL. The 

application of multidimensional analytical techniques enabled us to capture interactions between 

proteins and patterns shared among multiple analytes in a single analysis, rather than limiting our 

investigation to specific hypothesis testing in instances of univariate significance. This approach 

can provide a more comprehensive view of the dataset than most proteomic studies currently in 

the literature by directly interrogating interactions in a high-dimensional space. The broader 

adoption of this approach or similar multidimensional pipelines may provide the opportunity to 

gain a more complete understanding of “-omics” datasets and guide future research towards 

novel therapeutic targets. 
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Materials & Methods 

Study Design - Overview of cohorts 

Our study employed plasma proteomics data and clinical information from diverse cohorts, 

described below. Information regarding demographics (age, sex) and neurological function were 

provided. Study protocols were approved by their respective Institutional Review Boards. 

Research was performed in accordance with the Code of Ethics of the World Medical 

Association. Written informed consent was obtained from all patients before data collection. 

Early CADASIL cohort (N = 53) 

CADASIL patients (N = 25) were consecutively recruited, so as to avoid bias, at the Memory and 

Aging Center, UCSF, between February 25, 2019, to August 2, 2021. Patients were evaluated by 

neuropsychological testing, subjected to a blood draw (for plasma collection), and, except for 

one, underwent MRI neuroimaging. Neurocognitive testing included measures of functional 

decline (Global Clinical Dementia Rating - CDRTot, and Sum of Boxes - CDRBox), global 

cognition (Montreal Cognitive Assessment - MOCA), and processing speed (Modified Trail 

Making Test completion time - MTTime, Trail Making Test B completion time - TRAILB). 

MRI-derived measurements included white matter hyperintensity (WMH) volume, enlarged 

perivascular space (ePVS) volume (measured by LOAD), and Brain Parenchymal Fraction 

(BPF), which were quantified according to a previously described image processing pipeline 

(76). CADASIL status was confirmed based on NOTCH3 sequencing. The inclusion criteria for 

all control subjects (N = 28) were intact daily functioning per an informant (Clinical Dementia 

Rating = 0), neuropsychological performances within normative standards, and absence of 

significant clinical neurological disease assessed by history and physical exam. Control subjects 

underwent blood collection but no neuropsychological evaluation or medical imaging.  

Mayo Clinic CADASIL cohort (N = 45) 

CADASIL patients (N = 20) were recruited at the Department of Neurology, Mayo Clinic, 

Jacksonville between July 29, 2014, to February 2, 2021. Patients underwent clinical evaluation 

and blood draw. CADASIL status was confirmed based on NOTCH3 mutations discovered via 

genetic sequencing. Control subjects (N = 25) were selected based on absence of significant 

clinical neurological disease assessed by history and physical exam. 

Colombia CADASIL cohort (N = 66) 

Patients with CADASIL from Colombia (N = 25) and controls with no NOTCH3 mutations (N = 

41) who were family members of the CADASIL patients, were recruited from a cohort in 

Colombia during two periods, from August 3, 2000, to July 14, 2005 and from January 12, 2015 

to December 11, 2016. A subset of participants (10 CADASIL, 20 control participants) was 

longitudinally evaluated during both periods and constituted the longitudinal cohort for this 

study. Sequencing the NOTCH3 gene confirmed CADASIL status.  

Plasma Collection and Proteomic Analysis 

For proteomics characterization, plasma samples from all cohorts were analyzed through the 

SOMAscan 7k assay (SomaLogic, Inc., Boulder, CO). The SomaScan assay offers the advantage 

of unbiased protein expression analysis of a wide range of proteins, covering all biological 

functional domains. As described previously, the SOMAscan assay kit employs highly selective 
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single-stranded modified Slow Off-rate Modified DNA Aptamers (SOMAmer) for protein 

identification and quantification. A custom DNA microarray (Agilent) was used for 

quantification, which is reported as relative fluorescence units (RFU). Raw data then underwent 

quality control, calibration, and normalization. Prior to data analysis, we performed sample pre-

processing. All non-human SOMAmers (307 proteins) were removed from the dataset leaving 

7,289 proteins of the 7,596 proteins measured by SomaLogic. The data was then transformed by 

a natural log. 

Machine Learning Pipeline  

Recursive Feature Elimination, Leave-One-Out-Cross-Validation: Definition and Analysis 

In our study, we aimed to uncover CADASIL disease-associated changes in proteomic networks 

using comprehensive and unbiased machine learning (ML) techniques. Our approach's central 

basis was that protein sets which are crucial in distinguishing disease states may be key 

biological drivers of the disease (32). We developed a novel ML methodology that employs 

auxiliary Markov blanket feature selection (77, 78) combined with multiple recursive feature 

selection algorithms to mitigate bias towards any specific algorithm (79) and reduce overfitting, 

which is the fundamental challenge considering the inherent low sample size and high 

dimensionality of our, and many others, proteomics datasets. The first step of our method was 

the creation of Leave-One-Out (LOO) partitions of our data (35). For a dataset with N samples, 

we generated N partitions (LOO folds), each excluding one unique sample while including the 

rest. This approach ensured that the influence of any single sample is minimized in the model, 

addressing overfitting, and improving the model's generalizability.  

 

Before feature selection, every protein in each LOO fold was subjected to a univariate t-test at an 

alpha level of 0.05. This step is vital to reduce the risk of including proteins that show apparent 

but spurious associations with the disease due to random variation, a common issue in datasets 

where n ≪ p. For each fold, ~1,300 proteins survived the filtering step and proceeded to feature 

selection.  

 

For feature selection, we utilized a diverse array of algorithms, some employing Recursive 

Feature Elimination (RFE) and others independent of it. RFE is a technique that systematically 

removes the least significant features to identify the most relevant ones. In the context of our 

high-dimensional data, RFE helps in reducing the feature space, making the model more robust 

and less prone to overfitting. The RFE algorithm was coupled with repeated 10-fold cross-

validation during each elimination step to minimize variance in selection. The suite of algorithms 

employed included RFE with Logistic Regression (LR) with L1 and L2 regularization penalties, 

respectively (30, 31), RFE with regularized Linear Discriminant Analysis (rLDA) (80), RFE 

with Random Forests (RF) (29), Boruta - Random Forests (81), and Maximum-Relevance-

Minimum-Redundancy (MRMR) with an F-Statistic evaluator (82). Markov blanket feature 

selection was employed separately on the original datasets, due to computational expense and 

subsequently incorporated during the later aggregation steps (77, 78).  

 

Each algorithm was utilized to address specific challenges in the n ≪ p problem, where variables 

significantly outnumber observations. RFE-LR with L1 regularization was employed for its 

sparsity-inducing property, efficiently eliminating less significant features in well-defined classes 
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(31). RFE-LR with L2 regularization was used to manage multicollinearity, shrinking 

coefficients without excluding any features, thus preserving the contributions of all variables 

even in the presence of high inter-correlations (83). Regularized-LDA (rLDA) was selected for 

its enhanced accuracy in settings with normally distributed within-class proteins and small 

sample sizes, addressing the instability issues of logistic regression in scenarios with significant 

class separation (80). Additionally, the Boruta-RF method was integrated to effectively identify 

crucial features in high-dimensional datasets by comparing real features against randomly 

generated shadow features, optimizing feature selection under the n <<< p constraint. The 

Markov Blanket approach was effective for focusing on complex, non-linear variables most 

relevant to the target, thus efficiently reducing dimensionality (77). Finally, the MRMR method 

was used for balancing feature relevance and minimizing redundancy, crucial for predictive 

accuracy in datasets with numerous features. This comprehensive approach demonstrates a 

nuanced handling of feature selection in complex, high-dimensional datasets. 

 

Each aforementioned algorithm was applied to all N LOO folds, producing N sets of proteins for 

each algorithm. The final step in our methodology was a consensus aggregated feature selection 

approach to combine these results. First, we identified a ‘bag of features’ for each algorithm, 

selecting only those proteins that appeared in every set produced by that algorithm across all 

LOO partitions. Next, we cross-referenced these bags of features across different algorithms, 

further minimizing bias towards any single ML approach. A protein was included in our final 

proteomic signature only if it appeared in the ‘bag of features’ sets of at least two different 

models, often appearing in several. This method ensures a consensus among different algorithms, 

further reducing the risk of model overfitting and bias towards any single ML approach and 

providing a more reliable indicator of disease-associated proteomic changes. 

 

Subsequently, we performed Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA) on this protein set for visualization of disease discrimination. PCA was executed 

to display the remaining variance in the data, emphasizing that it is based on the disease state 

(84). In contrast, LDA was utilized to visually demonstrate that the protein set harbors 

information crucial for delineating and clustering the disease. Lastly, we performed permutation 

analysis to evaluate the significance of our findings. We randomly selected a protein signature of 

the same length from the dataset and evaluated its performance. Similarly, we permuted the class 

labels and evaluated the resulting classifier performance to ensure the signature was disease 

specific.  

Cross-Validation Between Cohorts and External Validation with Independent Cohort 

Following the determination of our protein signatures, we proceeded to evaluate their capacity to 

classify diseases. This exploration was underpinned by the hypothesis that proteins integral to 

successful disease classification models could potentially serve as disease-associated markers. 

To this end, we scrutinized the efficacy of an array of machine learning algorithms, inclusive of 

Linear Support Vector Machines (SVM), Random Forests (RF), Regularized Linear 

Discriminant Analysis (rLDA), Logistic Regression (LR), Ridge Classifier, Perceptron and 

Decision Trees. To ensure robustness and applicability of our findings, we sought to validate our 

proteomic signature specific to CADASIL. This validation was undertaken by refitting the Early 

disease signature to the Late disease cohort and vice versa. As well, an external CADASIL 

dataset (CADASIL-Colombia) was tested. This cross-validation and external validation served to 
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substantiate the generalizability of our CADASIL proteomic signatures across different patient 

cohorts.  

Programming Languages and Packages Used  

Data processing was handled in the R environment version 4.2.1 (R Foundation for Statistical 

Computing, 2022). The more complex machine learning data analyses, including Boruta-

Random Forests and MRMR feature selection, were performed using Jupyter Notebooks, 

leveraging pertinent libraries such as SciKit-Learn for machine learning algorithms and 

MRMR_Selection for MRMR analyses. SciKit-Learn was also the tool of choice for performing 

all correlation calculations. For data organization and basic numerical operations, we employed 

the Pandas and Numpy libraries respectively. Finally, visualizations pertaining to Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were generated using 

Matplotlib. 

Pathway and Gene Ontology Analysis 

Biological function analysis and pathway analyses via the Gene Ontology, KEGG, Panther, and 

the Reactome databases were performed through the use of an Appyter-based version of the 

EnrichR web tool (19). Similar EnrichR terms from separate databases were combined under one 

term and depicted as overlapping plots. We used Ingenuity® Pathway Analysis (QIAGEN, 

Redwood City) software for functional pathway and upstream regulatory analysis (URA) of the 

proteins–of-interest identified in this study (85). For the above we set the significance level 

threshold for the Benjamin-Hochberg adjusted p-value at 0.05. We further explored proteins of 

interest in the STRING database version 12.0 for protein-protein functional and physical 

interaction analysis, the results of which were displayed as a functional network. Interactions 

were considered with a medium confidence score of 0.4 or higher. We used the Reverse GEO 

Search Appyter to investigate the disease relevance of the protein signature (20). We searched 

the results for each protein in the signature and plotted the top 25 terms based on the negative log 

of the p-value for upregulated and downregulated signatures respectively. 

Human Brain Tissue and Bulk Transcriptome Sequencing 

We performed RNA sequencing (RNA-seq) analysis on postmortem frontal cortex samples from 

CADASIL patients (N = 5, provided by the Wang Laboratory, University of Michigan) and 

controls (N = 7, provided by the Mount Sinai Neuropathology Brain Bank). In short, deep-frozen 

samples from the BA4/6 area of the human cortex were micro-dissected. RNA extraction, 

preparation of cDNA libraries and transcriptome sequencing using the Illumina NovaSeq 

(paired-end 150-nucleotide read length) was conducted by Novogene Co., LTD (Beijing, China). 

All samples were assessed to have an RNA integrity number (RIN) above 3.5, so as to ensure a 

sufficient relative abundance of full-length transcripts. Reads of low quality or containing 

adapter sequences were filtered. Raw fastq files were analyzed through an in-house 

transcriptomics pipeline, RAPiD-nf, implemented in the NextFlow framework. Briefly, 

remaining adapter sequences were filtered by Trimmomatic v0.36 (86), STAR v2.7.1 (87) was 

used to align to the hg38 build of the human reference genome (GRCh38), and featureCounts 

performed BAM-level quantification (88). Results were subjected to quality control using 

FastQC and Picard. For Differential Expression Analysis we employed the DESeq2 package in R 

(89). Before analysis, sequences with sum of sequence counts < 10 across all participants were 
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removed. We calculated the average log2 fold change for each protein between CADASIL and 

control groups and then plotted the results in a bar plot to visualize transcriptional alterations of 

the signature proteins.  

Investigation of Brain Vasculature Expression of CADASIL Plasma Signature 

To elucidate cell type–specific dysregulation of the CADASIL signature proteins, we analyzed 

published single-cell RNA-seq data from Winkler et al. and Garcia et al. Heatmaps were 

generated to visualize the signed log2 fold changes of signature proteins across different brain 

vascular cell types. 

Statistical Analysis 

Mean demographics, imaging, and cognitive test measures were compared between cohorts with 

Student’s t-test for continuous variables and Chi-square tests for categorical variables. Average 

signed log2 fold change and Student’s t-test was calculated for old versus new time point 

CADASIL and control samples in longitudinal Colombia cohort. Linear regression models, with 

proteins derived from the ML pipeline as predictors, were used to test for associations with 

imaging and clinical variables. As well, we developed multiple linear regression models with 

backward feature selection of the protein set to generate feature subsets to predict clinical 

variables. All statistical analyses were performed using Numpy, Scipy, and Pandas libraries in 

Python. All statistical tests were unpaired. A 2-sided p-value ≤ 0.05 was considered statistically 

significant, and a p-value < 0.10 but greater than 0.05 marginally significant.  
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Figures and Tables 

 

 
Fig. 1. Illustration of data collection and analytical workflow used in this study. Plasma samples 

from three distinct CADASIL cohorts were collected and analyzed using the SomaSCAN 

proteomics platform. Protein signatures were determined by applying a machine learning feature 

extraction methodology, and findings were validated both internally and externally, as well as on 

post-mortem brain tissue. Protein panels were interrogated using interactive enrichment analysis, 

and we investigated the associations of molecular measures with quantitative measures of 

clinical abnormalities.  
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Fig. 2. Illustration of machine learning methodology. Multivariate analytical workflow for 

CADASIL proteomic signature identification, featuring robust statistical validation, 

dimensionality reduction from 7,000 to 1,300 proteins, LOO method for bias minimization, 

diverse feature selection algorithms, and a stringent ensemble aggregation technique leading to 

two definitive protein signatures. 
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Fig. 3. Machine learning identifies highly accurate and precise plasma proteomic signatures that 

discriminate CADASIL from control groups in early and late disease stages. (A) Fold changes 

(log2FC) of Early signature protein expression between CADASIL and Control groups. (B) Fold 

changes (log2FC) of Late signature protein expression between CADASIL and Control groups. 

(C) Principal component analysis of CADASIL-Early cohort separated from Control group, 

using Early signature proteins as features. (D) Principal component analysis of CADASIL-Late 

cohort using Late signature proteins as features. (E) Regularized linear discriminant analysis of 

CADASIL-Early cohort using Early signature proteins as features. (F) Regularized linear 

discriminant analysis of CADASIL-Late cohort using Late signature proteins as features. (G) 

Histogram of permutation results of random feature selection performance on Early cohort 

compared to derived Early signature. (H) Histogram of permutation analysis on Late cohort 

compared to derived Late signature. 
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Fig. 4. Validation of machine learning-derived Early and Late signatures. (A) Permutation 

analysis of Early signature performance in Late Cohort. (B) Permutation analysis of Late 

signature performance in Early Cohort. (C) Permutation analysis of Early signature in the 

external Colombia Cohort. (D) Permutation analysis of Late signature in the external Colombia 

Cohort. (E, F) Biplot combining ROC curve and LDA plot for Late signature in Early Cohort. 

(G, H) Biplot of ROC curve and LDA plot for Late signature in Colombia Cohort. 
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Fig. 5. Pathway and network analyses of Early and Late signatures. (A) STRING network of 

Early and Late signature proteins with predicted protein-protein physical and functional 

interactions. (B) IPA network of Early and Late signature proteins as well as predicted upstream 

regulators. Edges are colored according to the corresponding upstream regulator and edge width 

was assigned based on predicted activation Z-scores (see also Table S4). (C) Collated EnrichR 

pathway analysis from several libraries using Early signature. (D) Collated EnrichR pathway 

analysis from several libraries using Late signature. 
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Fig. 6. Brain transcriptomic analysis of Early and Late signatures in CADASIL. (A-B) Bulk 

RNASeq analysis depicting fold changes (log2FC) of the (A) Early signature and (B) Late 

signature in CADASIL versus control brain tissue. Bolded proteins are co-directional in plasma 

and brain tissue. (C-D) Chord diagrams illustrating vascular cell type expression of the Early 

signature based on Garcia et al. dataset (C), and Winkler et al. dataset (D). (E-F) Chord diagrams 

showcasing vascular cell type expression of the Late signature based on Garcia et al. dataset (E), 

and Winkler et al. dataset (F). (C-F) The width of the band represents the degree of upregulation 
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of the protein in a specific cell type. (C, E) aEndo, arterial endothelial cell; aSMC, arterial 

smooth muscle cell; capEndo, capillary endothelial cell; Fib1, fibroblast cluster 1; Fib2, 

fibroblast cluster 2; Fib3, fibroblast clutter 3; Per1, pericyte cluster 1; Per2, pericyte cluster 2; 

vEndo, venous endothelial cell; vSMC, vascular smooth muscle cell. (D, F) AC, astrocyte; Vasc, 

vascular cells; FB, perivascular fibroblast; FBMC, fibromyocyte; Macro, macrophage; TC, T 

cell; Neu1, Neuron Cluster 2; Neu1, Neuron Cluster 2; MG, microglia; OL, oligodendrocyte; and 

OPC, oligodendrocyte precursor cell.  
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Fig. 7. Plasma proteomic signatures in CADASIL patients: association and regression analyses. 

(A) Association analysis of the Early signature. (B) Association analysis of the Late signature. 

Proteins labeled in blue are upregulated in plasma; proteins labeled in black are downregulated in 

plasma. (C, D, E, F) Regression analyses for protein FN1 against various imaging and clinical 

metrics: (C) brain atrophy, (D) functional decline, (E) global cognition, and (F) processing time. 

(G, H, I, J) Regression analysis of protein ENPP2 against various imaging and clinical metrics: 

(G) brain atrophy (-log(BPF)), (H) functional decline (CDR), (I) global cognition (MOCA), and 

(J) processing time (TRAILB). Brain Atrophy, BPF, brain parenchymal fraction; Functional 

Decline, CDR, clinical dementia rating score; ePVS, Enlarged Perivascular Space Volume; 

Global Cognition, MOCA, Montreal Cognitive Assessment Score; Processing Time, TRAILB, 
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Trail Making Test Part B Completion; Time; WMH, White Matter Hyperintensities. Protein 

labels colored blue indicate upregulation in CADASIL plasma compared to controls. Proteins 

colored black indicate downregulation in CADASIL plasma compared to controls. 
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Cohort Status Sample Size (N) Female (%) Age (yrs.) 

 (mean ± SD) 

Early 

Control 28 50 52 (± 11) 

CADASIL 25 36 51 (± 12) 

Late 

Control 25 20 64 (± 11) 

CADASIL 20 50 57 (± 12) 

Colombia 

Control 42 40 41 (± 15) 

CADASIL  29 28 39 (± 10) 

Table 1. Summary Demographic Data of CADASIL Cohorts.  

Control, healthy control; CADASIL, CADASIL cases. 
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Supplementary Material

 

Fig. S1. Protein-centric Reverse GEO Search of (A) CADASIL-Early and (B) CADASIL-Late 

Signature.   
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Cohort Evaluator ROC Accuracy Precision Recall 

F-

score 

Explained 

Variance 

CADASIL-

Early 

Ridge Classifier 1.000 0.991 0.990 0.994 0.991 0.969 

LR 1.000 0.979 1.000 0.956 0.975 0.926 

rLDA 1.000 0.989 0.983 0.996 0.989 0.959 

Linear SVC 0.998 0.961 0.995 0.924 0.955 0.860 

Perceptron 0.995 0.951 0.973 0.928 0.944 0.824 

Decision Trees 0.730 0.731 0.738 0.718 0.717 0.054 

CADASIL-Late 

LR 1.000 0.999 0.998 1.000 0.999 0.996 

Linear SVC 0.999 0.988 0.989 0.985 0.986 0.954 

Perceptron 0.998 0.969 0.959 0.988 0.969 0.896 

Ridge Classifier 0.997 0.976 0.978 0.970 0.972 0.907 

rLDA 0.992 0.951 0.948 0.953 0.946 0.818 

Decision 

Trees 
0.849 0.857 0.867 0.835 0.827 0.480 

Table S1. CADASIL-Early ML classifiers and their performance using the CADASIL-Early, 

CADASIL-Late, and CADASIL-Colombia protein signature. 
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Cohort 
Best ML Model 

ROC 

P value of ROC 

Based on ROC Score Distribution of 

Random Protein Predictor Models 
Based on ROC Score Distribution of 

Permuted Label Models 

CADASIL-Late LDA 0.575 0.2058 0.3312 

CADASIL-

Colombia 

SVC 0.610 0.0552 0.1308 

Table S2. Best ML classifiers performance metrics using the CADASIL-Early protein signature 

on different cohorts. 
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Cohort 
Best ML Model 

ROC 

P value of ROC 

Based on ROC Score Distribution of 

Random Protein Predictor Models 
Based on ROC Score Distribution of 

Permuted Label Models 

CADASIL-

Early 

SVC 0.765 0.0042 0.049 

CADASIL-

Colombia 

SVC 0.716 0.0066 0.0168 

Table S3. Best ML classifiers performance metrics using the CADASIL-Late protein signature 

on different cohorts. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.28.587249doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.587249
http://creativecommons.org/licenses/by/4.0/


 

 

5 

 

 

Upstre

am 

Regula

tor 

Molecule 

Type 

Activat

ion z-

score 

Overla

p P 

value 

Target Molecules in Dataset 

IgG complex 1.982 0.0014

4 

CD209,FN1,GPX1,KNG1 

TGFB

1 

growth 

factor 

1.691 0.0068

6 

FN1,GAS7,HNMT,KNG1,LTA4H,MGP,SEMA3B,T

ARDBP 

Vegf group 1.342 0.0007

91 

ENPP2,FABP4,FLT4,FN1,MGP 

TCF7L

2 

transcript

ion 

regulator 

1.131 0.0031

4 

ACAA1,ENPP2,FABP4,FN1 

NFKBI

A 

transcript

ion 

regulator 

1 0.0037

7 

ENPP2,FN1,MGP,RRM1 

OSM cytokine 0.254 0.0093

5 

ACAA1,C4A/C4B,FN1,GAS7 

TNF cytokine 0.117 0.0001

14 

C4A/C4B,CD209,ECH1,ENPP2,FABP4,FLT4,FN1,F

UT3,GPX1,MGP 

FGF2 growth 

factor 

0.054 0.0007

07 

ENPP2,FABP4,FN1,FUT3,MGP 

PPAR

D 

ligand-

dependen

t nuclear 

receptor 

0.036 0.0008

16 

ACAA1,ECH1,FABP4,FN1 

TP53 transcript

ion 

regulator 

0 0.0019

6 

ACAA1,ECH1,ENPP2,FABP4,FN1,GAS7,GPX1,M

B,RRM1 

AGT growth 

factor 

-0.5 0.0454 C4A/C4B,ENDOU,FN1,GPX1 

EGF growth 

factor 

-0.694 0.0184 FN1,FUT3,MB,RRM1 

IL13 cytokine -0.885 4.74E-

05 

CD209,ENPP2,FABP4,FN1,GAS7,LTA4H 

LEP growth 

factor 

-1 0.0057

3 

ECH1,FABP4,FN1,GPX1 

RXRA ligand-

dependen

t nuclear 

receptor 

-1.067 0.0003

32 

C4A/C4B,FABP4,GPX1,KNG1,MGP 

Insulin group -1.128 0.0171 ENPP2,FABP4,FN1,RRM1 
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FOXO

1 

transcript

ion 

regulator 

-1.342 0.0005

76 

FABP4,FLT4,FN1,GPX1,MB 

Table S4. IPA Predicted Upstream Regulators of Early and Late signature proteins.  
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Cohort Status Sample Size 

(N) 

Female 

(%) 

Age (mean ± 

SD) 

CADASIL Brain 

Transcriptomics 

CO 5 40  67(± 4) 

CADASIL  7 29 66 (± 6) 

Table S5. Summary Demographic Data of CADASIL Brain Tissue Transcriptomics Cohort.  

CO, healthy control; CADASIL, CADASIL cases. 
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